Role of FlgT in anchoring the flagellum of Vibrio cholerae.
نویسندگان
چکیده
Flagellar motility has long been regarded as an important virulence factor. In Vibrio cholerae, the single polar flagellum is essential for motility as well as for proper attachment and colonization. In this study, we demonstrate that the novel flagellar protein FlgT is involved in anchoring the flagellum to the V. cholerae cell. A screen for novel colonization factors by use of TnphoA mutagenesis identified flgT. An in-frame deletion of flgT established that FlgT is required for attachment, colonization, and motility. Transmission electron microscopy revealed that while the flgT mutant is capable of assembling a phenotypically normal flagellum, the flgT population is mostly aflagellate compared to the wild-type population. Further analyses indicated that the flagellum of the flgT mutant is released into the culture supernatant from the cell upon completion of assembly. Additionally, hook basal body complexes appear to be released along with the filament. These results indicate that FlgT functions to stabilize the flagellar apparatus at the pole of the cell.
منابع مشابه
A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae.
Defined mutant libraries allow for efficient genome-scale screening and provide a convenient collection of mutations in almost any nonessential gene of interest. Here, we present a near-saturating transposon insertion library in Vibrio cholerae strain C6706, a clinical isolate belonging to the O1 El Tor biotype responsible for the current cholera pandemic. Automated sequencing analysis of 23,31...
متن کاملThe FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella
Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this wo...
متن کاملReactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins.
Cholera is a severe diarrheal disease caused by the motile Gram-negative rod Vibrio cholerae. Live-attenuated V. cholerae vaccines harboring deletions of the genes encoding cholera toxin have great promise for reducing the global burden of cholera. However, development of live vaccines has been hampered by the tendency of such strains to induce noncholeric reactogenic diarrhea in human subjects...
متن کاملA model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide
Bacterial flagella mediate host-microbe interactions through tissue tropism during colonization, as well as by activating immune responses. The flagellar shaft of some bacteria, including several human pathogens, is encased in a membranous sheath of unknown function. While it has been hypothesized that the sheath may allow these bacteria to evade host responses to the immunogenic flagellin subu...
متن کاملGrowth Inhibitory Effect of Lactocare on Vibrio cholerae
Background and Objective: Acute microbial diarrheal diseases are the major public health problems in the developing countries. People affected by diarrheal diseases have the lowest financial resources and poorest hygienic facilities. Children under five, primarily in Asian and African countries, are mostly the subjects affected by microbial diseases transmitted through water.<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 192 8 شماره
صفحات -
تاریخ انتشار 2010